
Insuring Small Businesses. Enabling Big Dreams

Unlocking the
Awesome Power
of Refactoring at

Work

Three things to keep in mind

Start anywhere Start small Strategic DDD can
have a big pay off

1 2 3

It can be hard to know where to begin when confronted by legacy code. I encourage
you start anywhere and start small - the Simple Design Dynamo can be one way to let

the code flow. Once you bring accidental complexity as far down as possible,
essential complexity is the next step.

01
02
03

04
05
06

Context

Timeline

Technical Refactoring
(some highlights)

Strategic Design
Refactoring

Testing in Production
with scientist

Outroduction

Agenda

A note on colour

In 2020, under pressure to deliver, a new lead
management component was shipped with concerning
levels of accidental complexity.

Memorable events of that year include:

● reviewed a 71 file PR meticulously;
● gnarly refactorings recommended;
● use of the Specification tactical pattern
● there were the beginnings of Domain Partitioning

(c.f. Mark Richards, Software Architecture
Monday)

The beginning

Refactoring

Refactoring is hard, not only knowing when to start, but the
uncertainty that it’ll pay-off.

Started Refactoring
The system has been
shipped. Time to address
some poorly factored
code!

Starts to Pay-Off
A new feature for a
completely new market
was added easily.

Debugging is fun!
A colleague identified
some incorrectly
classified landlords.
This was a 5 minute fix.

2021 2023 Early - mid 2024

Timeline slide

DDD
With accidental
complexity minimised,
the next step was to
enforce linguistic
boundaries.

Ports & Adapters
Make Ports and
Adapters obvious in a
Rails codebase.

Test Architecture?
How could we architect
tests to enhance
agility?

Early -Mid 2024 Mid 2024 2025

Timeline slide Evolving the Architecture

Enforcing boundaries around a ubiquitous language, making
architecture obvious and keep enhancing its agility.

Guilty Yet Courageous

Feelings of guilt

I let poorly factored code through, and I
felt I could’ve stood my ground better. I
chose to atone for my sins.

Have I unlocked the awesome
power of refactoring?

I remember seeing a presentation by J B
Rainsberger, entitled “Unlocking the
Awesome Power of Refactoring” I thought
“I think I can rescue this situation.”

I started at the entry point of the programme, where:

1. I aimed to maximise clarity: some method names weren’t clear enough, so I “improved”
them; then

2. I inverted dependencies: a function was given an object but only needed one attribute from
it, so why not just give it that attribute directly?;

3. I rigorously followed the definition of refactoring, making sure that the tests were always
green. This way I could ship the refactoring at a moment’s notice.

Start Anywhere: My First Microstep

-if (extranet_sales_platform = eligibility_for_extranets(rfq,
distribution_channel_name))

+if (extranet_sales_platform = find_extranet(rfq,
distribution_channel_name))

Start Small: Maximise Clarity

DeterminedSalesPlatform.new(

 sales_platform: DeterminedSalesPlatform::NONE,

 -rules: rules

 +reason: rules.reason

)

If the function really wants a reason, just give it that. Client-server coupling is loosened, modules
are more context independent and thus reusable.

Start Small: Invert Dependencies

def determine_sales_platform(rfq:, distribution_channel_name:)

 if (extranet_sales_platform = eligibility_for_extranets(rfq,
distribution_channel_name))

 extranet_sales_platform

 elsif (rules = lead_should_be_suppressed(rfq))

 DeterminedSalesPlatform.new(...rules: rules)

 else

 DeterminedSalesPlatform.new({ … })

 end

end

Before Refactoring

def determine_sales_platform(rfq:, distribution_channel_name:)

 if (extranet_sales_platform = find_extranet(rfq, distribution_channel_name))

 extranet_sales_platform

 elsif (rules = lead_should_be_suppressed(rfq))

 DeterminedSalesPlatform.new(...reason: rules.reason)

 else

 DeterminedSalesPlatform.new(...reason: rules.reason)

 end

end

After Refactoring

The code still felt “inappropriate”. I knew that Ruby allows you to write code like so:

x || y || z

I wished I had something like this - it would make the code (slightly) more unconditional which
could then lead to something like the following:

specifications.detect { |spec| spec.satisfied_by?(...) }

Start Small: Minimise Ifs

def determine_sales_platform(rfq:, distribution_channel_name:)

 if (extranet_sales_platform = find_extranet(rfq, distribution_channel_name))

 extranet_sales_platform

 elsif (rules = lead_should_be_suppressed(rfq))

 DeterminedSalesPlatform.new(...reason: rules.reason)

 else

 DeterminedSalesPlatform.new(...reason: rules.reason)

 end

end

Before Refactoring

def determine_sales_platform(rfq:, distribution_channel_name:)

 find_extranet(rfq, distribution_channel_name) ||

 lead_should_be_suppressed(rfq) ||

 backoffice

end

So I maximised clarity, inverted, but what heuristic am I using?

Slightly More Unconditional Code

1. Passes the tests
2. Reveals intention
3. No duplication
4. Fewest elements

Rules 2 and 3 can form a tight feedback loop...

Beck Design Rules, Fowler (2015)

Four Rules of Simple Design

https://martinfowler.com/bliki/BeckDesignRules.html

Putting an Age Old Battle to Rest, J. B. Rainsberger (2013)

Simple Design Dynamo

https://blog.thecodewhisperer.com/permalink/putting-an-age-old-battle-to-rest

Next I focused on the SPECIFICATION objects where I noticed a lot of hard-coded details too
deep in the code, which looked like they could become configurable. This may be a natural
consequence of adopting class methods. By inverting dependencies, replacing class methods
with instance ones, the hard coded data could be turned into state variables that clients
could pass in through the constructor.

Class Methods to Instance Methods

def self.satisfied_by?(rfq)

 new.satisfied_by?(rfq)

end

def satisfied_by?(rfq)

 AllOf[

 Specification.new(...),

 Specification.new(...)

]

end

Class Methods to Instance Methods

As I transformed the methods to instance ones, dependencies could be inverted and that meant
the system was becoming increasingly configurable, to the point where a business or product
person could tweak the rules for their use case. At one point, the rules could indeed be
configured using YAML.

However, as the code continued to be changed, there were subtle issues that suggested
moving away from YAML (in particular, an innocuous array.flatten). The best course of
action was to move back to ruby configuration, half an hour’s work for a developer. The code was
becoming increasingly agile.

A Sign: Increased Configurability

It wasn’t just in the SPECIFICATION objects where dependencies were inverted, soon enough, we
could configure polymorphic objects based on the business unit the code was executing in,
meaning the system was becoming a global platform.

Finally, in August 2022, I informed our US colleagues that if they wanted, they could configure the
system for their needs when they felt ready, and in January 2023, they indeed needed to add a
new feature! It took my colleague about an hour and half to introduce it and would
definitely have been harder had this refactoring not happened.

We were months ahead of the wider business.

A Sign: A Global Platform

Using the dynamo got us going at a low level. Others supported me, either by refactoring as they
worked on their cards or by reviewing my or their team’s PRs. I found myself playing the role of
architect, guiding teams to apply the dynamo themselves with rigorous TDD and feedback to me.

I established a feedback loop with Peter Vandenberk to help guide the higher level architecture as
we go, in particular we debated over lead routing, lead classification or lead categorisation, finally
settling on the latter.

I found myself in a flow, intrigued by where the design and architecture were going, and I just
couldn’t stop!

Evolutionary Architecture

A colleague had written an ADR to introduce Domain Partitioning, and the lead categorisation code
was in multiple places (the domain partition and in Rails folders). So from January 2022, I began
moving said code to a domain partition especially for the purpose. To do this, I appealed to a
technique known as Parallel Change (also known as Expand and Contract), popularised by J B
Rainsberger and others:

1. add the new thing;
2. migrate clients;
3. remove the old thing

Here, I would copy a module to the partition, run the tests, migrate clients of the module until there
were none for the ‘old’ code, and then deleted that old code. This work inadvertently led to an
evolution towards Ports and Adapters (although I didn’t know that at the time).

Domain Partitioning and Cohesion

https://www.youtube.com/watch?v=WOEYxPM0ljQ
https://martinfowler.com/bliki/ParallelChange.html

Say we have a constructor like so:

def initialize(x:, y:, direction:)

 @x = x

 @y = y

end

We now realise that (x, y) represents the concept of a Coordinate or Point and that’s what we really
wanted to pass in all along.

Question: how could we change the signature above without breaking clients?

Safely Evolving a Constructor

def initialize(x:, y:, direction:, starting_point: Point.new(x, y))

 @x = x

 @y = y

 @current_position = starting_point

end

The default setting of starting_point means clients (and therefore tests) won’t break.

Add the New Thing

MarsRover

 .new(x: 5, y: 5, direction: :north, starting_point: Point.new(5,
5))

…

MarsRover

 .new(x: -1, y: -1, direction: :north, starting_point: Point.new(-1,
-1))

Migrate Clients

def initialize(direction: :north, starting_point:)

 @current_position = starting_point

end

Eventually, we may remove the old arguments (it involves a few more steps e.g. default setting the
old arguments in the constructor so that clients no longer pass them in).

Remove the old thing

Techniques like the ones listed above
meant that teams could continue to
deliver features without interruption.

This is important, because often teams
feel that they have to stop shipping
features in order to refactor.

Do Not Disturb

A business person raised a concern to me that some landlords were incorrectly out of appetite. I
wrote a test with him to reproduce the bug, and it was literally a five-minute fix.

A Sign: Fixing Bugs Was Quick (and Fun)

I knew I’d separated the domain logic from frameworks (Rails, Sidekiq), but, quite fortuitously, in
April last year (2024), I met Alistair Cockburn at Extreme Tuesday Club in Hackney, London.

He published a book with the late Juan Manuel Garrido de Paz called “Hexagonal Architecture
Explained”. One thing I remember in particular Alistair telling me was a folder for driven and driving
adapters. As I pondered this, read his book, and it got me thinking about making Ports & Adapters
obvious as the architectural style for my domain partition.

Ports and Adapters

https://www.waterstones.com/book/hexagonal-architecture-explained/alistair-cockburn/juan-manuel-garrido-de-paz/9781737519782
https://www.waterstones.com/book/hexagonal-architecture-explained/alistair-cockburn/juan-manuel-garrido-de-paz/9781737519782

Ports and Adapters

Around that time, we also wanted to move away from a key concept in Simply Business’ domain
model - the Request for Quote (RFQ). This concept was used all over Lead Categorisation. I had
been refactoring and soon there will be leads who did not make an RFQ. To start with, there
wanted to be a bounded context, where the ubiquitous language was crisp and the domain model
could be managed autonomously.

So my coachee and I introduced that context boundary, replace references to Request for Quote
with a new concept, Lead. The first step was to define an interface for it, keep the methods
closer together to present a coherent group responsible to a single actor, and have RFQ
temporarily implement that interface, effectively have play the role of Lead. Afterwards, we were
able to introduce Lead safely.

Domain-Driven Design

I was told by our architects that one of our internal APIs was being deprecated, and advised to
move away from it. We discussed what other APIs could be used instead and was assured that it
provided the same data as the deprecated one. One of our architects and I began by doing some
conceptual mapping of concepts from other bounded contexts into ours (Lead Management),
which helped me figure out how to incrementally ship the translation and keep the system working.
However, there was a nagging question. My coachee actually designed the translation layer’s
public interface.

How can I design a safe to fail experiment to see that translating with the new API would yield
the same results as the current way?

Enter…

Lost in Translation Layers and Deprecated APIs

Testing in Production With scientist

I hit upon the idea of using scientist on a quiet Sunday evening, and by Wednesday, I had the
experiment (just the control) running in production. The next step was to test-drive the experiment I
wanted to actually run, translating concepts using the new API (the candidate), and capturing the
results to New Relic. All the refactoring from earlier made this surprisingly easy.

I decided to assert that the control and candidate experiments computed the same domain event
in production. The candidate experiment would compute the domain event but it wasn’t necessary
to announce it downstream.

Integrating Scientist Was Easy

Owing to less stress, I could be scientific about my bug fixing (even using spreadsheets!). Here,
the control represents what the outcome should have been. I could even use proof by
contradiction to determine whether the SPECIFICATIONs were satisfied or not. The conclusion I
came to was that I was not correctly translating the trade for certain types of leads.

Bug Fixing Felt Like an Detective Story

The peaks represent the number of mismatched events per day so, thankfully, I didn’t “just” switch
over to the new API. It was time to find out the cause of the mismatches, and because there was
no business impact I didn’t need to panic.

Testing in Production

I fixed one translation error, but it wasn’t enough: the number of mismatches was still increasing,
albeit at a reduced rate. I casually spoke to one of my coachees about my issues and he explained
the scenario to me, relating to particular kinds of leads, and how to translate the trade for them, so
off I went and test-drove the fix.

Incrementally I shipped a fix until I could be confident enough there were no mismatches…

And Yet Still More Incorrect Assumptions

The Big Picture

As I was fixing the mismatches, testing
was proving very painful: I had set up I had
to include to drive the public function, but it
was irrelevant to what I was testing,
namely, conceptual translation, so I
realised that a separate object responsible
purely for that could help. I used the
Extract Class refactoring & testing was
pure joy.

A translation layer appeared =>

Lost in Translation Layers Again

The effort of translation is somewhere
between conformist and anti-corruption
layer, but feels closer to the former.

What I found whilst lamenting the design
decisions of Risk Profiling around how
trade was stored, the consequences
were contained inside the translation
layer, and the Lead Categorisation
domain model artefacts remained clean.

Context Map

“Contact points with other BOUNDED
CONTEXTS are particularly important to
test. Tests help compensate for the
subtleties of translations and the lower
level communication that typically exist at
boundaries

Eric Evans
Domain-Driven Design

Insuring Small Businesses. Enabling Big Dreams.

Little steps can
make a big
difference

1

Ensuring
alignment, but

also being
guided by

stories

2

Sponsorship

3

DDD can offer
the next big
pay-off in

refactoring

4

Ports and
Adapters

5

Safe to Fail
Experiments

and Testing in
Production

6

Retrospective

In Retrospect

Looking back what did I learn?

Insuring Small Businesses. Enabling Big Dreams.

Image: UK Brand Campaign 2024

Thank you

To the following:

1. Peter Vandenberk;
2. Colum O’Donovan;
3. Ben Johnson;
4. Cengizan Ziyaeddin;
5. Amar Shah;
6. Nitish Rathi;
7. Eric Evans;
8. Adam Scott;
9. Daniel Barlow;

10. Alistair Cockburn;
11. Tim Mackinnon

Hemal Varambhia

Technical Coach, Simply
Business

Pronouns: He/Him/His
Github: @hemalvarambhia

Insuring Small Businesses. Enabling Big Dreams.

Insuring Small Businesses. Enabling Big Dreams.

Simply Business is one of the UK’s
largest Business and Landlord
insurance providers.

About us

Since we started life in 2005, we’ve helped over
three million small businesses and self-employed
people find the protection that’s right for them,
from builders to bakers and personal trainers.

1. Unlocking the Awesome Power of Refactoring, J. B. Rainsberger (2021)
2. Domain-Driven Design, Tackling Complexity in the Heart of Software, Eric Evans (2003)
3. Implementing Domain-Driven Design, Vaughn Vernon (2013)
4. Putting an Age Old Battle to Rest, J. B. Rainsberger (2013)
5. Hexagonal Architecture Explained, Juan Manuel Garrido de Paz and Alistair Cockburn (2024)
6. Decoupling from Rails, Jim Weirich (2013)
7. Tidy First? A Personal Exercise in Empirical Software Design

References

https://www.youtube.com/watch?v=yXrY5pT88vA
https://www.waterstones.com/book/domain-driven-design/eric-evans/9780321125217
https://www.waterstones.com/book/implementing-domain-driven-design/vaughn-vernon/9780321834577
https://blog.thecodewhisperer.com/permalink/putting-an-age-old-battle-to-rest
https://www.waterstones.com/book/hexagonal-architecture-explained/alistair-cockburn/juan-manuel-garrido-de-paz/9781737519782
https://www.youtube.com/watch?v=tg5RFeSfBM4
https://www.oreilly.com/library/view/tidy-first/9781098151232/

